Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.169
Filtrar
1.
Nat Commun ; 13(1): 662, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115533

RESUMO

Increasingly, antibodies are being used to treat and prevent viral infections. In the context of HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser extent Fc-mediated effector functions. It remains unclear whether augmenting effector functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential. Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to examine the role of antibody-mediated effector and complement (C') activity when administered prophylactically against SHIV challenge in rhesus macaques. With sub-protective dosing, we find a 78-88% reduction in post-acute viremia that is associated with 10E8v4-mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C' functions as determined in vitro. These results suggest that effector functions inherent to unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma neutralizing titers, while C' functions are dispensable in this setting, informing design of bNAb modifications for improving protective efficacy.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Proteínas do Sistema Complemento/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Fagocitose/imunologia , Viremia/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Amplamente Neutralizantes/farmacologia , Linhagem Celular Tumoral , Proteínas do Sistema Complemento/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Anticorpos Anti-HIV/metabolismo , Anticorpos Anti-HIV/farmacologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Macaca mulatta , Masculino , Fagocitose/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Viremia/sangue , Viremia/prevenção & controle
2.
Cancer Immunol Immunother ; 71(3): 627-636, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34297159

RESUMO

CAP-100 is a novel therapeutic antibody directed against the ligand binding site of human CCR7. This chemokine receptor is overexpressed in chronic lymphocytic leukemia (CLL) and orchestrates the homing of CLL cells into the lymph node. Previous studies, on a very limited number of samples, hypothesized that the Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib might induce loss of surface CCR7 levels in CLL cells. CAP-100 will be evaluated in clinical trials as a therapy for relapse/refractory CLL patients, who have received at least two systemic therapies (NCT04704323). As nowadays many relapse/refractory CLL patients will have received ibrutinib as a prior therapy, we aimed to investigate in a large cohort of CLL patients the impact of this BTKi on CCR7 expression and functionality as well as on the therapeutic activity of CAP-100. Our data confirm that ibrutinib moderately down-regulates the very high expression of CCR7 in CLL cells but has no apparent effect on CCR7-induced chemotaxis. Moreover, CLL cells are perfectly targetable by CAP-100 which led to a complete inhibition of CCR7-mediated migration and induced strong target cell killing through antibody-dependent cell-mediated cytotoxicity, irrespective of previous or contemporary ibrutinib administration. Together, these results validate the therapeutic utility of CAP-100 as a next-line single-agent therapy for CLL patients who failed to ibrutinib and confirm that CAP-100 and ibrutinib have complementary non-overlapping mechanisms of action, potentially allowing for combination therapy.


Assuntos
Adenina/análogos & derivados , Antineoplásicos Imunológicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptores CCR7/genética , Adenina/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores CCR7/antagonistas & inibidores , Receptores CCR7/metabolismo
3.
J Hematol Oncol ; 14(1): 204, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34886888

RESUMO

Resistance to anti-cancer monoclonal antibody (mAb) therapy remains a clinical challenge. Previous work in our laboratory has shown that T cell help in the form of interleukin-2 maintains long-term NK cell viability and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Lack of such T cell help may be a potential mechanism for resistance to mAb therapy. Here, we evaluate whether concomitant treatment with anti-CD3 × anti-cancer bispecific antibodies (bsAbs) can overcome this resistance by enhancing T cell help, and thereby maintaining long-term NK cell-mediated ADCC. Normal donor peripheral blood mononuclear cells were depleted of T cells, replenished with defined numbers of autologous T cells (from 0.75 to 50%) and co-cultured with mono-/bispecific antibody-treated target tumor cells for up to 7 days. At low T cell concentrations, bsAb-activated T cells (mainly CD4+ T cells) were more effective than resting T cells at maintaining NK cell viability and ADCC. Brief (4 h to 2 day) bsAb exposure was sufficient to enhance long-term ADCC by NK cells. These findings raise the hypothesis that local T cell activation mediated by systemic treatment with anti-CD3 X anti-cancer bsAb may enhance the anti-tumor efficacy of monospecific mAbs that mediate their primary therapeutic effect via NK-mediated ADCC.


Assuntos
Anticorpos Biespecíficos/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Células Cultivadas , Humanos , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia
4.
Cells ; 10(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34831127

RESUMO

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited therapeutic options. Metastasis is the major cause of TNBC mortality. Angiogenesis facilitates TNBC metastases. Many TNBCs also form vascular channels lined by tumor cells rather than endothelial cells, known as 'vasculogenic mimicry' (VM). VM has been linked to metastatic TNBC behavior and resistance to anti-angiogenic agents. Epidermal growth factor receptor (EGFR) is frequently expressed on TNBC, but anti-EGFR antibodies have limited efficacy. We synthesized an anti-EGFR antibody-endostatin fusion protein, αEGFR IgG1-huEndo-P125A (αEGFR-E-P125A), designed to deliver a mutant endostatin, huEndo-P125A (E-P125A), to EGFR expressing tumors, and tested its effects on angiogenesis, TNBC VM, and motility in vitro, and on the growth and metastasis of two independent human TNBC xenograft models in vivo. αEGFR-E-P125A completely inhibited the ability of human umbilical vein endothelial cells to form capillary-like structures (CLS) and of TNBC cells to engage in VM and form tubes in vitro. αEGFR-E-P125A treatment reduced endothelial and TNBC motility in vitro more effectively than E-P125A or cetuximab, delivered alone or in combination. Treatment of TNBC with αEGFR-E-P125A was associated with a reduction in cytoplasmic and nuclear ß-catenin and reduced phosphorylation of vimentin. αEGFR-E-P125A treatment of TNBC xenografts in vivo inhibited angiogenesis and VM, reduced primary tumor growth and lung metastasis of orthotopically implanted MDA-MB-468 TNBC cells, and markedly decreased lung metastases following intravenous injection of MDA-MB-231-4175 lung-tropic TNBC cells. Combined inhibition of angiogenesis, VM, and TNBC motility mediated by αEGFR-E-P125A is a promising strategy for the prevention of TNBC metastases.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Endostatinas/metabolismo , Receptores ErbB/antagonistas & inibidores , Imunoglobulina G/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Inibidores da Angiogênese/farmacologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Vimentina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
5.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639102

RESUMO

The prognosis of multiple myeloma (MM) has drastically improved owing to the development of new drugs, such as proteasome inhibitors and immunomodulatory drugs. Nevertheless, MM is an extremely challenging disease, and many patients are still refractory to the existing therapies, thus requiring new treatment alternatives. Venetoclax is a selective, orally bioavailable inhibitor of BCL-2 that shows efficacy in MM not only as a single agent but also in combination therapy, especially for MM patients with translocation t(11;14). However, many patients are refractory to this drug. Here, we treated the MM cell lines KMS12PE and KMS27 with a combination treatment of venetoclax targeting BCL-2 and daratumumab targeting CD38 to evaluate the synergistic cytotoxicity of these drugs in vitro. MM cell lines were co-cultured with natural killer (NK) cells at an effector:target ratio of 0.3:1 in the presence of serial concentrations of daratumumab and venetoclax, and the resulting apoptotic MM cells were detected by flow cytometry using annexin V. These results indicated that the antibody-dependent cell-mediated NK cytotoxicity was enhanced in KMS12PE and KMS27 cells harboring t(11;14) with a high BCL-2 expression, suggesting that the combination treatment of venetoclax and daratumumab should be especially effective in patients with these characteristics.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sinergismo Farmacológico , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/patologia , Mieloma Múltiplo/patologia , Anticorpos Monoclonais/administração & dosagem , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Células Matadoras Naturais/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Sulfonamidas/administração & dosagem , Células Tumorais Cultivadas
6.
Int Immunopharmacol ; 100: 108112, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34521023

RESUMO

More than 100 monoclonal antibodies (mAbs) have been approved by FDA. The mechanism of action (MoA) involves in neutralization of a specific target via the Fab region and Fc effector functions through Fc region, while the latter include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). ADCP has been recognized one of the most important MoAs, especially for anti-cancer mAbs in recent years. However, traditional bioassays measuring ADCP always introduced primary macrophages and flow cytometry, which are difficult to handle and highly variable. In this study, we engineered a monoclonal Jurkat/NFAT/CD32a-FcεRIγ effector cell line that stably expresses CD32a-FcεRIγ chimeric receptor and NFAT-controlled luciferase. The corresponding mAb could bind with the membrane antigens on the target cells with its Fab fragment and CD32a-FcεRIγ on the effector cells with its Fc fragment, leading to the crosslinking of CD32a-FcεRIγ and the resultant expression of subsequent NFAT-controlled luciferase, which represents the bioactivity of ADCP based on the MoA of the mAb. With rituximab as the model mAb, Raji cells as the target cells, and Jurkat/NFAT/CD32a-FcεRIγ cells as the effector cells, we adopted the strategy of Design of Experiment (DoE) to optimize the bioassay. Then we fully validated the established bioassay according to ICH-Q2(R1), which proved the good assay performance characteristics of the bioassay, including specificity, accuracy, precision, linearity, stability and robustness. This RGA can be applied to evaluate the -ADCP bioactivity for anti-CD20 mAbs in lot release, stability testing as well as biosimilar comparability. The engineered cells may also potentially be used to evaluate the ADCP bioactivity of mAbs with other targets.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Bioensaio , Genes Reporter , Linfoma de Células B/tratamento farmacológico , Fagocitose/efeitos dos fármacos , Rituximab/farmacologia , Antineoplásicos Imunológicos/metabolismo , Humanos , Células Jurkat , Luciferases/genética , Luciferases/metabolismo , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Reprodutibilidade dos Testes , Rituximab/metabolismo
7.
Front Immunol ; 12: 737311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557197

RESUMO

Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/uso terapêutico , Neoplasias Colorretais/terapia , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia Adotiva , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/transplante , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cetuximab/efeitos adversos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citocinas/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Resultado do Tratamento , Evasão Tumoral/efeitos dos fármacos
8.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34257155

RESUMO

Trastuzumab, a targeted anti-human epidermal-growth-factor receptor-2 (HER2) monoclonal antibody, represents a mainstay in the treatment of HER2-positive (HER2+) breast cancer. Although trastuzumab treatment is highly efficacious for early-stage HER2+ breast cancer, the majority of advanced-stage HER2+ breast cancer patients who initially respond to trastuzumab acquire resistance to treatment and relapse, despite persistence of HER2 gene amplification/overexpression. Here, we sought to leverage HER2 overexpression to engage antibody-dependent cellular phagocytosis (ADCP) through a combination of trastuzumab and anti-CD47 macrophage checkpoint immunotherapy. We have previously shown that blockade of CD47, a surface protein expressed by many malignancies (including HER2+ breast cancer), is an effective anticancer therapy. CD47 functions as a "don't eat me" signal through its interaction with signal regulatory protein-α (SIRPα) on macrophages to inhibit phagocytosis. Hu5F9-G4 (magrolimab), a humanized monoclonal antibody against CD47, blocks CD47's "don't eat me" signal, thereby facilitating macrophage-mediated phagocytosis. Preclinical studies have shown that combining Hu5F9-G4 with tumor-targeting antibodies, such as rituximab, further enhances Hu5F9-G4's anticancer effects via ADCP. Clinical trials have additionally demonstrated that Hu5F9-G4, in combination with rituximab, produced objective responses in patients whose diffuse large B cell lymphomas had developed resistance to rituximab and chemotherapy. These studies led us to hypothesize that combining Hu5F9-G4 with trastuzumab would produce an anticancer effect in antibody-dependent cellular cytotoxicity (ADCC)-tolerant HER2+ breast cancer. This combination significantly suppressed the growth of ADCC-tolerant HER2+ breast cancers via Fc-dependent ADCP. Our study demonstrates that combining trastuzumab and Hu5F9-G4 represents a potential new treatment option for HER2+ breast cancer patients, even for patients whose tumors have progressed after trastuzumab.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Antígeno CD47/imunologia , Trastuzumab/administração & dosagem , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Feminino , Humanos , Imunoterapia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia
9.
Commun Biol ; 4(1): 893, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290356

RESUMO

Immunotherapy has emerged as a promising approach to treating several forms of cancer. Use of immune cells, such as natural killer (NK) cells, along with small molecule drugs and antibodies through antibody dependent cell-mediated cytotoxicity (ADCC) has been investigated as a potential combination therapy for some difficult to treat solid tumors. Nevertheless, there remains a need to develop tools that support co-culture of target cancer cells and effector immune cells in a contextually relevant three-dimensional (3D) environment to provide a rapid means to screen for and optimize ADCC-drug combinations. To that end, here we have developed a high throughput 330 micropillar-microwell sandwich platform that enables 3D co-culture of NK92-CD16 cells with pancreatic (MiaPaCa-2) and breast cancer cell lines (MCF-7 and MDA-MB-231). The platform successfully mimicked hypoxic conditions found in a tumor microenvironment and was used to demonstrate NK-cell mediated cell cytotoxicity in combination with two monoclonal antibodies; Trastuzumab and Atezolizumab. The platform was also used to show dose response behavior of target cancer cells with reduced EC50 values for paclitaxel (an anti-cancer chemotherapeutic) when treated with both NK cells and antibody. Such a platform may be used to develop more personalized cancer therapies using patient-derived cancer cells.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Esferoides Celulares/fisiologia , Análise Serial de Tecidos/instrumentação , Trastuzumab/farmacologia , Microambiente Tumoral , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/imunologia , Células MCF-7 , Análise em Microsséries
10.
Front Immunol ; 12: 658562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113342

RESUMO

Natural killer (NK) cells are becoming valuable tools for cancer therapy because of their cytotoxicity against tumor cells without prior sensitization and their involvement in graft-versus-host disease; however, it is difficult to obtain highly cytotoxic NK cells without adding extra feeder cells. In this study, we developed a new method for obtaining highly cytotoxic NK cells from peripheral blood mononuclear cells (PBMCs) independently of extra feeder cell addition using rituximab not coated on a flask (non-coated rituximab). We found that rituximab could promote both the activation and expansion of NK cells from PBMCs, irrespective of being coated on a flask or not. However, NK cells activated by non-coated rituximab had much greater antitumor activity against cancer cells, and these effects were dependent on autologous living B cells. The antibody-dependent cellular cytotoxicity effect of NK cells activated by non-coated rituximab was also more substantial. Furthermore, these cells expressed higher levels of CD107a, perforin, granzyme B, and IFN-γ. However, there was no difference in the percentage, apoptosis, and cell-cycle progression of NK cells induced by coated and non-coated rituximab. Non-coated rituximab activated NK cells by increasing AKT phosphorylation, further enhancing the abundance of XBP1s. In conclusion, we developed a new method for amplifying NK cells with higher antitumor functions with non-coated rituximab via autologous B cells from PBMCs, and this method more efficiently stimulated NK cell activation than by using coated rituximab.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/farmacologia , Linfócitos B/imunologia , Fatores Imunológicos/farmacologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Rituximab/farmacologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Citocinas/biossíntese , Granzimas/metabolismo , Humanos , Fatores Imunológicos/imunologia , Imunofenotipagem , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Perforina/metabolismo , Rituximab/imunologia
11.
Front Immunol ; 12: 663919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995393

RESUMO

Background: Persistence of HIV reservoir even in suppressive ART is the key obstacle in HIV-1 cure. We evaluated the ability of HIV-1 C Env to reactivate the latently infected resting memory CD4 cells and the ability of polyclonal HIV antibodies mediating ADCC to lyse the reactivated targets. Methodology: HIV-1 antibodies from 25 HIV infected individuals (14 ADCC responders and 11 non-responders) were tested against the Env-C reactivated primary cells; CD4+ and CD4+CD45RO+ memory T cells in the presence of autologous or heterologous effector cells using multicolor flow cytometry. The frequencies of p24+ve target cells were measured to determine the reactivation and antibody mediated lysis. Results: Increase in the frequency of p24 expressing cells (P < 0.01 in all cases) after Env-C stimulation of target cells indicated reactivation. When these reactivated targets were mixed with effector cells and HIV-1 antibodies, the frequencies of p24 expressing targets were decreased significantly when the ADCC mediating antibodies (P < 0.01 in all cases) were added but not when the antibodies from ADCC non-responders or HIV negative individuals were added. In parallel, the NK cell activation was also increased only when ADCC mediating antibodies were added. Conclusion: The study showed that the HIV-1 Env could act as latency reversal agent (LRA), and only ADCC mediating antibodies could lyse the reactivated HIV reservoirs. The short stimulation cycle used in this study could be useful in testing LRAs as well as immune mediated lysis of reactivated reservoirs. The observations have further implication in designing antibody mediated immunotherapy for eradication of latent HIV reservoir.


Assuntos
Fármacos Anti-HIV/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Adulto , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Feminino , Citometria de Fluxo , Anticorpos Anti-HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Provírus/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
12.
Oncol Rep ; 46(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34013368

RESUMO

Trophoblast cell surface antigen 2 (TROP2), reported to be overexpressed in several types of cancer, is involved in cell proliferation, invasion, metastasis, and poor prognosis of many types of cancer. Previously, a highly sensitive anti­TROP2 monoclonal antibody (clone TrMab­6; mouse IgG2b, κ) was developed using a Cell­Based Immunization and Screening (CBIS) method. TrMab­6 was useful for investigations using flow cytometry, western blot, and immunohistochemistry. The aim of the present study was to investigate whether TrMab­6 possesses in vitro antibody­dependent cellular cytotoxicity (ADCC) or complement­dependent cytotoxicity (CDC) activities or in vivo antitumor activities using mouse xenograft models of TROP2­overexpressed CHO­K1 (CHO/TROP2) and breast cancer cell lines, including MCF7, MDA­MB­231, and MDA­MB­468. In vitro experiments revealed that TrMab­6 strongly induced ADCC and CDC activities against CHO/TROP2 and the three breast cancer cell lines, whereas it did not show those activities against parental CHO­K1 and MCF7/TROP2­knockout cells. Furthermore, in vivo experiments on CHO/TROP2 and MCF7 xenografts revealed that TrMab­6 significantly reduced tumor growth, whereas it did not show antitumor activities against parental CHO­K1 and MCF7/TROP2­knockout xenografts. The findings suggest that TrMab­6 is a promising treatment option for TROP2­expressing breast cancers.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Moléculas de Adesão Celular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células CHO , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Feminino , Técnicas de Inativação de Genes , Humanos , Células MCF-7 , Camundongos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Sci Rep ; 11(1): 5774, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707569

RESUMO

FDA-approved anti-PD-L1 antibody drug Atezolizumab is a human IgG1 without glycosylation by an N297A mutation. Aglycosylation of IgG1 has been used to completely remove the unwanted Fc-mediated functions such as antibody-dependent cytotoxicity (ADCC). However, aglycosylated Atezolizumab is very unstable and easy to form aggregation, which causes quick development of anti-drug antibody (ADA) in 41% of Atezolizumab-treated cancer patients, eventually leading to loss of efficacy. Here, we report the development of the anti-PD-L1 antibody drug Maxatezo, a glycosylated version of Atezolizumab, with no ADCC activity, better thermo-stability, and significantly improved anti-tumor activity in vivo. Using Atezolizumab as the starting template, we back-mutated A297N to re-install the glycosylation, and inserted a short, flexible amino acid sequence (GGGS) between G237 and G238 in the hinge region of the IgG1 heavy chain. Our data shows that insertion of GGGS, does not alter the anti-PD-L1's affinity and inhibitory activity, while completely abolishing ADCC activity. Maxatezo has a similar glycosylation profile and expression level (up to 5.4 g/L) as any normal human IgG1. Most importantly, Maxatezo's thermal stability is much better than Atezolizumab, as evidenced by dramatic increases of Tm1 from 63.55 °C to 71.01 °C and Tagg from 60.7 °C to 71.2 °C. Furthermore, the levels of ADA in mice treated with Maxatezo were significantly lower compared with animals treated with Atezolizumab. Most importantly, at the same dose (10 mg/kg), the tumor growth inhibition rate of Maxatezo was 98%, compared to 68% for Atezolizumab.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno B7-H1/imunologia , Animais , Anticorpos Monoclonais Humanizados/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Glicosilação , Humanos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Receptores Fc/metabolismo , Temperatura
14.
MAbs ; 13(1): 1902034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33752566

RESUMO

Dual targeting of surface receptors with bispecific antibodies is attracting increasing interest in cancer therapy. Here, we present a novel bivalent and bispecific antagonistic molecule (Dab-Fc) targeting human epidermal growth factors 2 and 3 (HER2 and HER3) derived from the Db-Ig platform, which was developed for the generation of multivalent and multispecific antibody molecules. Dab-Fc comprises the variable domains of the anti-HER2 antibody trastuzumab and the anti-HER3 antibody 3-43 assembled into a diabody-like structure stabilized by CH1 and CL domains and further fused to a human γ1 Fc region. The resulting Dab-Fc 2 × 3 molecule retained unhindered binding to both antigens and was able to bind both antigens sequentially. In cellular experiments, the Dab-Fc 2 × 3 molecule strongly bound to different tumor cell lines expressing HER2 and HER3 and was efficiently internalized. This was associated with potent inhibition of the proliferation and migration of these tumor cell lines. Furthermore, IgG-like pharmacokinetics and anti-tumoral activity were demonstrated in a xenograft tumor model of the gastric cancer cell-line NCI-N87. These results illustrate the suitability of our versatile Db-Ig platform technology for the generation of bivalent bispecific molecules, which has been successfully used here for the dual targeting of HER2 and HER3.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacocinética , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacocinética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos SCID , Terapia de Alvo Molecular , Invasividade Neoplásica , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/imunologia , Receptor ErbB-3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586678

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe disease following congenital infection and in immunocompromised individuals. No vaccines are licensed, and there are limited treatment options. We now show that the addition of anti-HCMV antibodies (Abs) can activate NK cells prior to the production of new virions, through Ab-dependent cellular cytotoxicity (ADCC), overcoming viral immune evasins. Quantitative proteomics defined the most abundant HCMV proteins on the cell surface, and we screened these targets to identify the viral antigens responsible for activating ADCC. Surprisingly, these were not structural glycoproteins; instead, the immune evasins US28, RL11, UL5, UL141, and UL16 each individually primed ADCC. We isolated human monoclonal Abs (mAbs) specific for UL16 or UL141 from a seropositive donor and optimized them for ADCC. Cloned Abs targeting a single antigen (UL141) were sufficient to mediate ADCC against HCMV-infected cells, even at low concentrations. Collectively, these findings validated an unbiased methodological approach to the identification of immunodominant viral antigens, providing a pathway toward an immunotherapeutic strategy against HCMV and potentially other pathogens.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antígenos Virais/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Proteínas não Estruturais Virais/imunologia , Ativação Viral/efeitos dos fármacos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular Transformada , Infecções por Citomegalovirus/patologia , Humanos , Ativação Viral/imunologia
16.
Sci Rep ; 11(1): 3346, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558639

RESUMO

There is a significant interest in designing therapeutic agents that can enhance ADCC and thereby improve clinical responses with approved antibodies. We recently reported the combination of an imidazoquinoline-based TLR7/8 agonist (522) with a monoclonal antibody improved ADCC in vitro and in vivo. In the present study, we tested several new small molecule TLR7/8 agonists that induce significantly higher cytokines compared to both the FDA-approved TLR7 agonist, imiquimod, and 522. We evaluated these agonists in combination with monoclonal antibody therapy, with the main goal of enhancing ADCC. Our studies show these TLR7/8 agonists induce robust pro-inflammatory cytokine secretion and activate NK cells. Specifically, we found the agonists 574 and 558 significantly enhanced NK cell-mediated ADCC in vitro as well as enhanced the anti-cancer efficacy of monoclonal antibodies in two different in vivo mouse models. Additionally, we found the agonists were able to stimulate CD8 T cells, likely indicative of an early adaptive immune response.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Imiquimode/farmacologia , Células Matadoras Naturais/imunologia , Neoplasias Experimentais , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Células A549 , Animais , Humanos , Células Matadoras Naturais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biotechnol Bioeng ; 118(5): 1818-1831, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33501689

RESUMO

The reduction of antibody core-fucosylation is known to enhance antibody-dependent cellular cytotoxicity (ADCC). In this study, 5-Thio-l-Fucose (ThioFuc) was investigated as a media and feed supplement for modulating the fucosylation profile of therapeutic proteins and, thereby, improving the resulting effector functions. Glycan analysis of five different therapeutic proteins produced by a diverse set of Chinese hamster ovary cell lines demonstrated a clone dependent impact of ThioFuc treatment. Using rituximab as a model, an efficient dose- and time-dependent reduction of core-fucosylation up to a minimum of 5% were obtained by ThioFuc. Besides a concomitant increase in the afucosylation level up to 48%, data also revealed up to 47% incorporation of ThioFuc in place of core-fucosylation. In accordance with the glycan data, antibodies produced in the presence of ThioFuc revealed an enhanced FcγRIIIa binding up to 7.7-fold. Furthermore, modified antibodies subjected to a cell-based ADCC reporter bioassay proved to exert both a 1.5-fold enhanced ADCC efficacy and 2.6-fold enhancement in potency in comparison to their native counterparts-both of which contribute to an improvement in the ADCC activity. In conclusion, ThioFuc is a potent fucose derivative with potential applications in drug development processes.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Fucose/análogos & derivados , Receptores de IgG , Proteínas Recombinantes , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Fucose/química , Fucose/metabolismo , Fucose/farmacologia , Glicosilação/efeitos dos fármacos , Humanos , Ligação Proteica , Receptores de IgG/química , Receptores de IgG/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Front Immunol ; 12: 791958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095867

RESUMO

Trastuzumab induced a high rate of pathological Complete Response (pCR) in patients affected by locally advanced HER2-positive Breast Cancer (HER2-BC), by exploiting immune-mediated mechanisms as Antibody-Dependent Cell Cytotoxicity (ADCC) involving Natural Killer (NK) cells. Host's immune genetics could influence the response to therapy, through the expression of variants that characterize NK receptors involved in ADCC effectiveness. Killer cell immunoglobin-like receptors (KIRs) modulate NK cell activity through their binding to class-I Human Leukocyte Antigens (HLA). The impact of the KIR/HLA repertoire in HER2-BC is under study. We characterized KIR genotypes of 36 patients with locally advanced HER2-BC treated with neoadjuvant chemotherapy including trastuzumab. We monitored pCR achievement before surgery and Disease-Free Survival (DFS) and Overall Survival (OS) after adjuvant therapy. HLA, and Fc gamma receptor IIIa (FcγR3A) and IIa (FcγR2A) were genotyped through targeted PCR and Sanger sequencing in 35/36 patients. The KIR-HLA combinations were then described as functional haplotypes and divided in two main categories as inhibitory tel A and stimulatory tel B. Trastuzumab-dependent ADCC activity was monitored with an in vitro assay using a HER2-BC model and patients' NK cells.We observed a higher frequency of KIR activators in patients who achieved a pCR compared to partial responders. During the study of functional haplotypes, individuals carrying a tel B haplotype showed greater ADCC efficiency than tel A cases. In subjects with the tel A haplotype the presence of the favorite V allele in FcγR3A receptor improved their low ADCC levels. Regardless of the haplotypes detected, the presence of KIR3DL2/HLA-A03 or A11 was always associated with the FcγR3A V allele, and therefore correlated with greater ADCC efficiency. However, this particular KIR receptor appeared to harm DFS and OS. Indeed, patients with tel B haplotype without KIR3DL2/HLA-A03 or A11 showed a better outcome. Our data, although preliminary, suggested a potential predictive role for KIR haplotype tel B, in identifying patients who achieve a pCR after neoadjuvant treatment with trastuzumab, and supported a negative prognostic impact of KIR3DL2/HLA-A03 or A11 in the adjuvant setting.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Antígenos HLA/metabolismo , Receptor ErbB-2/metabolismo , Receptores KIR/metabolismo , Trastuzumab/uso terapêutico , Adulto , Idoso , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Prognóstico , Adulto Jovem
19.
J Appl Toxicol ; 41(3): 458-469, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33103261

RESUMO

The development of nanotechnology has led to the increased production of zinc oxide nanoparticles (ZnO-NPs) and their application in a wide variety of everyday products. It creates the need for a full assessment of their safety for humans. The aim of the study was to assess the toxic effects of ZnO-NPs on model human cells of the immune system: U-937, HL-60, HUT-78, and COLO-720L. Particular attention was paid to the direct interaction of the nanoparticles with membrane lipids and the role of zinc ions in the mechanism of their toxicity. Cell viability, lipid peroxidation, cell membrane integrity, and the amount of zinc ions released from nanoparticles were tested. Disruption in cell metabolism was noted for ZnO-NPs concentrations from 6.25 mg/L. Contact with ZnO-NPs caused lipid peroxidation of all cells and correlated with membrane disruption of HL-60, HUT-78, and COLO-720L cells. Model monolayers (Langmuir technique) were used to assess the interaction of the nanoparticles with the studied lipids. Physicochemical parameters, such as the area per molecule at maximal layer compression, the pressure at which the monolayer collapses, and the static compression modulus, were calculated. The models of the HL-60 and U-937 cell membranes under ZnO-NPs treatment reacted in a different way. It has also been shown that Zn2+ are not the main causative factor of ZnO-NPs toxicity. Investigating the early stages of mechanism of nanoparticles toxicity will allow for a more complete risk assessment and development of methods for a safer synthesis of engineering nanomaterials.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Humanos
20.
Leukemia ; 35(1): 201-214, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32350373

RESUMO

Multiple myeloma (MM) is incurable, so there is a significant unmet need for effective therapy for patients with relapsed or refractory disease. This situation has not changed despite the recent approval of the anti-CD38 antibody daratumumab, one of the most potent agents in MM treatment. The efficiency of daratumumab might be improved by combining it with synergistic anti-MM agents. We therefore investigated the potential of the histone deacetylase (HDAC) inhibitor ricolinostat to up-regulate CD38 on MM cells, thereby enhancing the performance of CD38-specific therapies. Using quantitative reverse transcription polymerase chain reaction and flow cytometry, we observed that ricolinostat significantly increases CD38 RNA levels and CD38 surface expression on MM cells. Super-resolution microscopy imaging of MM cells by direct stochastic optical reconstruction microscopy confirmed this rise with molecular resolution and revealed homogeneous distribution of CD38 molecules on the cell membrane. Particularly important is that combining ricolinostat with daratumumab induced enhanced lysis of MM cells. We also evaluated next-generation HDAC6 inhibitors (ACY-241, WT-161) and observed similar increase of CD38 levels suggesting that the upregulation of CD38 expression on MM cells by HDAC6 inhibitors is a class effect. This proof-of-concept illustrates the potential benefit of combining HDAC6 inhibitors and CD38-directed immunotherapy for MM treatment.


Assuntos
ADP-Ribosil Ciclase 1/genética , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Glicoproteínas de Membrana/genética , Mieloma Múltiplo/genética , ADP-Ribosil Ciclase 1/metabolismo , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/farmacologia , Imunofenotipagem , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Pirimidinas/farmacologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...